

Dear Family,

In Chapter 3, your child will learn to solve inequalities in one variable.

An **inequality** is a statement that two quantities or expressions are *not* equal. An inequality looks very much like an equation, but it contains a sign other than the equal sign (=).

A **solution** is a value that makes the inequality true. Inequalities frequently have too many solutions to name individually, so all of the possibilities are shown by graphing them on a number line.

Inequality Signs		
>	greater than	
<	less than	
\geq	greater than or equal	
\leq	less than or equal	
#	not equal	

Inequality: x-2>5

Solution: Any value of *x* greater than 7 makes the inequality

true, or x > 7.

Graph: −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Graphing Inequalities on a Number Line		
For a boundary point that is a solution	use a solid circle.	
For a boundary point that is not a solution	use an open circle.	
For a continuous series of points greater than	use an arrow to the right .	
For a continuous series of points less than	use an arrow to the left .	

You solve an inequality in much the same way that you solve an equation: you **isolate the variable** by using **inverse operations** in the reverse order. However, there is one major difference: when you multiply or divide both sides of the inequality by a *negative* number, you must reverse the inequality sign. You can see why this is true with a simple example:

True Inequality:
$$8 > -2$$

$$8(-3)$$
 $-2(-3)$ Multiply both sides by -3 .

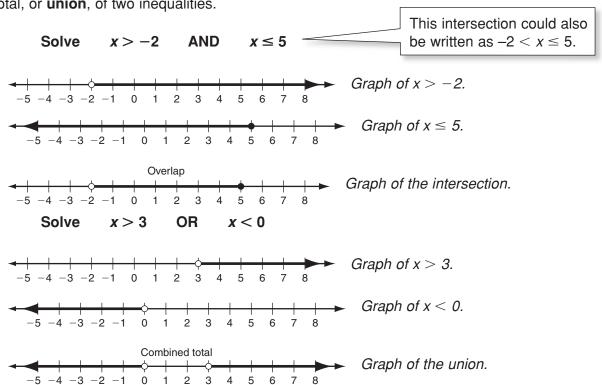
True Inequality:
$$-24 < 6 > must change to <.$$

With this one exception, solving one-step inequalities, multi-step inequalities, and inequalities with variables on both sides follows the same process as solving an equation.

Also like equations, inequalities can result in identities and contradictions. An **identity** is an inequality that is *always* true. A **contradiction** is an inequality that is *never* true.

Identities: 3 < 5 $x \ge x$ x + 2 > x + 1 **Contradictions:** 2 > 10 x < x $x + 5 \le x$

A **compound inequality** is formed when two inequalities are combined using the words AND or OR. On a number-line graph, a compound inequality with AND represents the overlap, or **intersection**, of two inequalities. A compound inequality with OR represents the combined total, or **union**, of two inequalities.



As with all topics in algebra, inequalities can be applied to model and solve real-world problems. Here's an example:

Karyn has a coupon for 15% off at an online bookstore. If the total of her purchases *after* any discounts is at least \$25, she will get free shipping. How much do her purchases need to total *before* the coupon in order to get free shipping?

Let x represent the total of Karyn's purchases *before* the coupon. Then x - 0.15x represents her purchases *after* the coupon.

"At least" means the purchases must equal or be greater than \$25.

Inequality: $x - 0.15x \ge 25$

For additional resources, visit go.hrw.com and enter the keyword MA7 Parent.