Date \qquad

Dear Family,
In Chapter 3, your child will learn to solve inequalities in one variable.
An inequality is a statement that two quantities or expressions are not equal. An inequality looks very much like an equation, but it contains a sign other than the equal sign (=).

A solution is a value that makes the inequality true. Inequalities frequently have too many solutions to name individually, so all of the possibilities are shown by graphing them on a number line.

Inequality: $x-2>5$

Inequality Signs	
$>$	greater than
$<$	less than
\geq	greater than or equal
\leq	less than or equal
\neq	not equal

Solution: Any value of x greater than 7 makes the inequality true, or $x>7$.

Graph:

Graphing Inequalities on a Number Line	
For a boundary point that is a solution...	...use a solid circle.
For a boundary point that is not a solution...	...use an open circle.
For a continuous series of points greater than...	...use an arrow to the right.
For a continuous series of points less than...	...use an arrow to the left.

You solve an inequality in much the same way that you solve an equation: you isolate the variable by using inverse operations in the reverse order. However, there is one major difference: when you multiply or divide both sides of the inequality by a negative number, you must reverse the inequality sign. You can see why this is true with a simple example:

True Inequality: 8	>-2		
$8(-3)$		$-2(-3)$	Multiply both sides by -3. True Inequality: -24<6 must change to $<$.

With this one exception, solving one-step inequalities, multi-step inequalities, and inequalities with variables on both sides follows the same process as solving an equation.

Also like equations, inequalities can result in identities and contradictions.
An identity is an inequality that is always true. A contradiction is an inequality that is never true.

Identities:	$3<5$	$x \geq x$	$x+2>x+1$
Contradictions:	$2>10$	$x<x$	$x+5 \leq x$

A compound inequality is formed when two inequalities are combined using the words AND or OR. On a number-line graph, a compound inequality with AND represents the overlap, or intersection, of two inequalities. A compound inequality with OR represents the combined total, or union, of two inequalities.

Solve $\quad x>-2 \quad$ AND $\quad x \leq 5$
This intersection could also be written as $-2<x \leq 5$.

As with all topics in algebra, inequalities can be applied to model and solve real-world problems. Here's an example:

Karyn has a coupon for 15% off at an online bookstore. If the total of her purchases after any discounts is at least $\$ 25$, she will get free shipping. How much do her purchases need to total before the coupon in order to get free shipping?

Let x represent the total of Karyn's purchases before the coupon.
Then $x-0.15 x$ represents her purchases after the coupon.
"At least" means the purchases must equal or be greater than $\$ 25$.
Inequality: $x-0.15 x \geq 25$

For additional resources, visit go.hrw.com and enter the keyword MA7 Parent.

